A new study by engineers at MIT, Caltech, and ETH Zürich shows that “nanoarchitected” materials — materials designed from precisely patterned nanoscale structures — may be a promising route to lightweight armor, protective coatings, blast shields, and other impact-resistant materials. The researchers have fabricated an ultralight material made from nanometer-scale carbon struts that give the material toughness and mechanical robustness. The team tested the material’s resilience by shooting it with microparticles at supersonic speeds, and found that the material, which is thinner than the width of a human hair, prevented the miniature projectiles from tearing through it.

“The same amount of mass of our material would be much more efficient at stopping a projectile than the same amount of mass of Kevlar,” says the study’s lead author, Carlos Portela, assistant professor of mechanical engineering at MIT.
If produced on a large scale, this and other nanoarchitected materials could potentially be designed as lighter, tougher alternatives to Kevlar and steel.
“The knowledge from this work… could provide design principles for ultra-lightweight impact resistant materials [for use in] efficient armor materials, protective coatings, and blast-resistant shields desirable in defense and space applications,” says co-author Julia R. Greer, a professor of materials science, mechanics, and medical engineering at Caltech, whose lab led the material’s fabrication.